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Abstract Nogo-A is a myelin-derived inhibitor playing a

pivotal role in the prevention of axonal regeneration. A func-

tional domain of Nogo-A, Amino-Nogo, exerts an inhibitory

effect on axonal regeneration, although the mechanism is

unclear. The present study investigated the role of the Amino-

Nogo–integrin signaling pathway in primary retinal ganglion

cells(RGCs)withrespecttoaxonaloutgrowth,whichisrequired

for axonal regeneration. Immunohistochemistry showed that

integrin av, integrin a5 and FAK were widely expressed in the

visualsystem.Thy-1andGAP-43immunofluorescenceshowed

that axonal outgrowth of RGCs was promoted by Nogo-A

siRNA and a peptide antagonist of the Nogo-66 functional

domain of Nogo-A (Nep1–40), and inhibited by a recombinant

rat Nogo-A-Fc chimeric protein (420). Western blotting

revealed increased integrin av and p-FAK expression in Nogo-

A siRNA group, decreased integrinav expression in420 group

anddecreasedp-FAKexpression inNep1–40group. Integrina5

expression was not changed in any group. RhoA G-LISA

showed that RhoA activation was inhibited by Nogo-A siRNA

and 420, but increased by Nep1–40 treatment. These results

suggest that Amino-Nogo inhibits RGC axonal outgrowth pri-

marily through the integrin av signaling pathway.

Keywords Amino-Nogo � Axonal outgrowth � Central

nervous system � Integrin � Signaling pathway

Abbreviation

RGC Retinal ganglion cell

CNS Central nervous system

siRNA Small interfering RNA

FAK Focal adhesion kinase

DMEM Dulbecco’s modified Eagle’s medium

FBS Fetal bovine serum

ECL Enhanced chemiluminescence

SD Sprague–Dawley

PBS Phosphate buffered saline

NC Negative control

HRP Horseradish peroxidase

GCL Ganglion cell layer

INL Inner nuclear layer

Introduction

Axonal regeneration after central nervous system (CNS)

injury in adult mammals is difficult to induce, being pre-

vented by multiple factors [1–4]. Nogo is a myelin-
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associated inhibitor that may be an important factor in

axonal regeneration [5–7]. Nogo-A is the major Nogo

isoform that plays an essential role in axonal regeneration.

Nogo-A contains two functional domains: an amino-ter-

minal domain (172 amino acids) and the Nogo-66 loop

(located between two hydrophobic domains) [5, 7, 8]. The

Nogo-66 domain both inhibits axonal regeneration and

regulates axonal growth, guidance and CNS plasticity

neurogenesis [9–17]. Conversely, the amino-terminal

domain of Nogo-A (Amino-Nogo) only exerts an inhibitory

effect on spinal nerve axonal regeneration [5, 18–20].

However, the role of Amino-Nogo in the optic nerve and

the mechanism of by which Amino-Nogo inhibits CNS

axonal regeneration have not been fully elucidated.

Integrins are heterodimeric cell-surface glycoproteins

composed of 18 a and 8 b subunits that are non-covalently

connected. Integrins bind ligands in the extracellular

matrix and form adhesion complexes that couple to the

actin cytoskeleton. These complexes are necessary for

cellular expansion and axonal growth [21]. Amino-Nogo

inhibits cell adhesion and axonal outgrowth by inhibiting

integrins, and the effect of Amino-Nogo is related to dif-

ferent integrin subunits in axonal outgrowth [22, 23].

Integrins av and a5, are widely expressed in the CNS [22],

however, which integrin subunit is the main player in the

Amino-Nogo–integrin signaling pathway operating in

axonal outgrowth remains unknown.

The optic nerve is a special somatic sensory nerve that

conducts visual impulses. The optic nerve originates in

retinal ganglion cells (RGCs), and the axons of these cells

comprise the optic nerve. To investigate the Amino-Nogo–

integrin signaling pathway in the optic nerve, we examined

the expression of Amino-Nogo–integrin signaling path-

way-related proteins in the visual system, axonal outgrowth

in primary RGCs and changes in the expression of integrins

and their downstream components FAK (focal adhesion

kinase) and RhoA [20, 24–28]. Primary RGCs were treated

with Nogo-A small interfering RNA (siRNA), a Nogo-66

antagonist peptide (Nep1–40) or a recombinant Amino-

Nogo Fc chimeric protein (420). Our results demonstrated

that the Amino-Nogo domain primarily bound integrin av

and inhibited RGC axonal outgrowth via an inhibitory

effect on the downstream signaling pathway.

Materials and Methods

Materials and Animals

Dulbecco’s modified Eagle’s medium (DMEM)/F12,

2.5 mM L-glutamine, 15 mM HEPES, fetal bovine serum

(FBS) and trypsin were purchased from Gibco (MD, USA).

The mouse monoclonal Thy-1 antibody was obtained from

Becton–Dickinson (CA, USA), and antibodies targeting

Nogo-A, integrin av, integrin a5, FAK (sc-932), and

phospho-FAK (p-FAK, sc-81493) were purchased from

Santa Cruz (CA, USA). The Nogo-66 (1–40) antagonist

peptide (Nep1–40), poly-L-lysine and 5-bromo-20-deoxy-

uridine were purchased from Sigma Aldrich (MO, USA).

The recombinant rat Nogo-A Fc chimeric protein (420)

was purchased from R&D Systems (MN, USA), and the

RhoA activation assay kit was purchased from Cytoskele-

ton (CO, USA). pAKD.CMV.bGlobin.eGFP.H1.shRNA

was purchased from Neuron Biotech (SH, China). The

enhanced chemiluminescence (ECL) substrate was pur-

chased from Pierce (CO, USA).

Neonatal Sprague-Dawley (SD) rats of either sex at

postnatal days 1–3 and adult SD rats of either sex weighing

180–220 g were provided by the Animal Experimental

Center (Institute of Surgery Research, Daping Hospital,

Third Military Medical University, China). The Animal

Research Committee of the Third Military Medical Uni-

versity approved the study protocol.

Integrin av, Integrin a5 and FAK Immunohistochemistry

Adult SD rats were anesthetized with pentobarbital sodium

(30 mg/kg, i.p.) and transcardially perfused with 4 % para-

formaldehyde. The brain, eyeball and optic nerve were

removed and further fixed by immersion in 4 % parafor-

maldehyde overnight. Serial 3-lm sections of the brain,

eyeball and optic nerve were cut from paraffin blocks, and

the sections were incubated with primary antibodies (anti-

integrin av, anti-integrin a5 and anti-FAK at 1:200) at 4 �C

overnight. The sections were visualized using the ABC

system with 3, 30-diaminobenzidine tetrahydrochloride after

three washes with phosphate-buffered saline (PBS) and

counterstained with hematoxylin. Sections were incubated

with PBS instead of primary antibodies for negative controls.

RGC Culture and Identification

Neonatal SD rats at postnatal days 1–3 were disinfected in

75 % alcohol. Eyeballs were excised, and the retinas were

dissected under a microscope. A 0.25 % trypsinase solution

was added for digestion, which was terminated by the

DMEM/F12 medium containing 10 % FBS. Cell suspensions

were prepared and seeded onto poly-L-lysine-pretreated

12-well plates at a density of 5–6 9 105 cells/ml in DMEM/

F12 medium containing 100 kU/L penicillin, 100 mg/L

streptomycin and 10 % FBS. The cells were cultured at

37 �C in 95 % air and 5 % CO2. Then, 5-bromo-20-deoxy-

uridine (20 lg/L) was added, and half of the medium was

removed after 24 h to inhibit the growth of non-neuronal

cells. Immunofluorescence labeling was performed using
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anti-Thy-1, a specific marker of RGCs, to verify that the

cultured cells were RGCs. RGCs were obtained by incuba-

tion with DMEM/F12 medium for 7 days.

Virus Production and Purification

Three small interfering RNA (siRNA) duplexes targeting

Nogo-A were used: siRNA1 50-GAGGCAGATTATGTTA

CAA-30; siRNA2 50-GGTGCAGATAGATCATTAA-30;
and siRNA3 50-GATCCA GGCTATCCAGAAA-30. BLAST

analysis revealed that these sequences exhibited no

homology to any rat genes other than Nogo-A. The nega-

tive control (NC) sequence, 50-TTCTCCGAACGTGT-

CACGT-30, exhibited no homology to any rat genes. An

H1 RNA polymerase III promoter drove the expression of

Nogo-A. The Nogo-A siRNA was packaged with pAKD.

CMV .bGlobin.eGFP.H1.shRNA. Large-scale recombinant

Fig. 1 Integrin av, integrin a5 and FAK expression in the visual

system. Serial 3–-lm-thick paraffin sections of the brain, eyeball and

optic nerve were analyzed using immunohistochemistry. Anti–inte-

grin av, anti–integrin a5 and anti–FAK primary antibodies were used

at a 1:200 dilution, and PBS was applied as a negative control. A A

coronal slice of the visual cortex determined using a rat brain atlas

(a). Hematoxylin and eosin staining on sections from normal visual

cortex is presented (b). PBS was applied as a negative control (c).

Integrin av (d), integrin a5 (e) and FAK (f) are widely expressed in

the normal visual cortex. B Representative sections of a normal retina

stained for integrin av (a), integrin a5 (b), FAK (c) and the PBS

control (d). Integrin av-, integrin a5- and FAK-positive cells were

distributed primarily in the RGCs of the ganglion cell layer (GCL),

inner nuclear layer (INL). C Representative sections of a normal optic

nerve stained for integrin av (a), integrin a5 (b), FAK (c) and the PBS

control (d). Positive signals for the integrin av, integrin a5 and FAK

proteins were located in a regular beaded arrangement along the long

axis of the optic nerve. The arrows indicate positive expression

(brown). N = 6. Scale bar: 50 lm (Color figure online)
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adeno-associated virus2/8 (rAAV) production and purifi-

cation were performed as described previously [17].

RGC Outgrowth Assay

Retinal ganglion cells were seeded on poly-L-lysine-pre-

treated 12-well plates. Nep1–40 (50 nM) [29], and420 (40

nM) [22] were added to the DMEM/F12 medium. NC

siRNA and Nogo-A siRNAs were transfected into RGCs

24 h after plating, and half of the culture medium was

replaced every 24 h. The RGCs were stained with anti-

Thy-1 and axonal outgrowth of RGCs was detected by

staining with anti-GAP-43 after 7 days. Axonal lengths

were analyzed using Image-Pro Plus 6.0 (Media Cyber-

netics, Silver Spring, MD, USA), and at least 60 neurons in

each experimental group were quantified in duplicate wells

from six independent experiments.

Western Blotting

RIPA buffer was used to lyse unstimulated RGCs (control)

or RGCs treated with NC siRNA, Nogo-A siRNA,

Nep1–40 (50 nM) and 420 (40 nM). The protein samples

were electrophoretically resolved using 10 % SDS-PAGE

and transferred onto PVDF membranes. The membranes

were blocked for 2 h at room temperature in 5 % skim milk

powder diluted with Tris-buffered saline Tween-20. The

membranes were incubated overnight at 4 �C with diluted

anti-integrin av, anti-integrin a5, anti-p-FAK, anti-FAK

(1:500) and anti-b-actin (1:2000) antibodies in 5 % milk.

The membranes were incubated with horseradish peroxi-

dase (HRP)-conjugated secondary antibodies for 1 h at

room temperature (rabbit anti-mouse HRP and goat anti-

rabbit HRP, 1:5000). Signals were detected using ECL-

Plus and membranes were exposed to film. The signal

intensity of each band on the western blot was quantified

using Labwork 4.6 and normalized to that for b-actin.

RhoA Activity Assay

RhoA GTPase activity was measured in cell lysates prepared

from control and NC siRNA-, Nogo-A siRNA-, Nep1–40-

(50 nM), and 420- (40 nM)-stimulated RGCs using a

commercially available G-LISA RhoA activation assay kit.

Lysate protein concentrations were measured, and lysis

buffer was added to the cellular extracts to yield identical

protein concentrations. The samples, a blank control and a

RhoA-positive control were placed on an orbital microplate

shaker (400 rpm) at 4 �C for 30 min. Antigen-presenting

buffer was added. The samples were then incubated at room

temperature for 2 min. The samples were incubated with a

diluted anti-RhoA primary antibody (1:250) for 45 min.

They were then incubated with diluted secondary antibody

for 45 min, followed by incubation with the HRP detection

reagent at 37 �C for 15 min. HRP stop buffer (50 ll) was

added, and the signal absorbance was assessed at 490 nm

using a microplate spectrophotometer.

Statistical Analysis

All of the results are reported as the mean ± SD of at least

six independent experiments. Comparisons of two groups

were made using the unpaired t test. Multiple-group sta-

tistical analyses were performed using one-way ANOVA,

followed by least significant difference post hoc tests. All

statistical analyses were performed using SPSS software

(version 10.0 for Windows; SPSS Inc., Chicago, IL, USA).

P values \ 0.05 were considered statistically significant.

Results

Expression of Integrin av, Integrin a5 and FAK

in the Visual Cortex, Retina and Optic Nerve

Tissues from adult SD rats were subjected to immunohis-

tochemistry to detect the expression of integrin av, integrin

a5 and FAK proteins in the visual system. Integrin av,

integrin a5 and FAK expression were observed in the

visual cortex, retina and optic nerve (Fig. 1). The location

of the visual cortex was determined using a rat brain atlas

(Fig. 1A a) [30]. Integrin av-, integrin a5- and FAK-

positive cells were commonly located in neuronal soma

membranes and neurites in visual cortex slices (Fig. 1A d–

f). Integrin av-, integrin a5- and FAK-positive cells were

distributed primarily in the RGCs of the ganglion cell layer

(GCL) and inner nuclear layer (INL) in the retina (Fig. 1B

a–c). Many cells in the optic nerve were notably stained,

and positive signals for integrin av, integrin a5 and FAK

proteins were regularly observed in a beaded arrangement

along the optic nerve long axis (Fig. 1C a–c).

Amino-Nogo Inhibits RGC Axonal Outgrowth

siRNAs against Nogo-A were used to examine the func-

tions of Amino-Nogo. We investigated the efficacy of the

rAAV2/8-Nogo-A-siRNAs by detecting Nogo-A protein

level using western blots 7 days after transfection. The

rAAV2/8-Nogo-A-siRNA3 group exhibited the strongest

knockdown of Nogo-A compared with the level in the

rAAV2/8-NC-siRNA group (P \ 0.01). A weaker Nogo-A

knockdown effect was observed in the rAAV2/8-Nogo-A-

siRNA1 and rAAV2/8-Nogo-A-siRNA2 groups compared

with the level in the rAAV2/8-NC-siRNA group

(P \ 0.01). These results confirmed that rAAV2/8-Nogo-
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A-siRNA3 efficiently knocked down Nogo-A, so this

siRNA was used in further experiments (Fig. 2).

We next examined the axonal length of RGCs to observe

the effect of Amino-Nogo on RGCs axonal outgrowth. The

axonal length of Nogo-A siRNA-treated RGCs (Fig. 3c)

was the greatest, but Nep1–40 treatment (Fig. 3d) also

yielded longer axons than those in the control group

(Fig. 3a). The axonal length of 420-treated RGCs

(Fig. 3e) was the shortest among the treated groups. The

axonal length of NC siRNA-treated RGCs (Fig. 3b) was

not significantly different from that of the control group

(Fig. 3a). These results demonstrated that Amino-Nogo

inhibited RGC axonal outgrowth.

Nogo-A knockdown Increases the Level of Integrin av

and p-FAK and Inhibits the Activation of RhoA

Nogo-A siRNA treatment significantly increased integrin av

expression (P \ 0.01), but no significant change in integrin

a5 expression was observed (Fig. 4). The phosphorylation

of FAK at Tyr397 was also evaluated. Nogo-A siRNA

treatment increased the p-FAK level (P \ 0.05), but no

changes in total FAK level were observed (Fig. 5). RhoA

activation was measured using the G-LISA method, and

Nogo-A siRNA treatment significantly suppressed RhoA

activation (P \ 0.01) (Fig. 6). These results revealed that

the integrin signaling pathway was regulated by Nogo-A and

that the integrin subunit involved might be integrin av.

Nep1–40 Inhibits FAK Phosphorylation and RhoA

Activation but does not Alter Integrins av and Integrin

a5 Expression

Western blotting revealed that Nepl–40, a specific antag-

onist of Nogo-66, did not alter the expression of integrin av

or integrin a5 (Fig. 4). However, Nep1–40 treatment

decreased p-FAK (P \ 0.05) (Fig. 5). RhoA activation was

suppressed in the Nep1–40 treatment group (P \ 0.05)

(Fig. 6). Our data suggested that the Nogo-66 domain did

not regulate the integrin signaling pathway. Furthermore,

these results suggested that the Amino-Nogo domain was

the specific Nogo-A domain influencing the integrin sig-

naling pathway.

420 Inhibits Integrin av and p-FAK Level

and Activates RhoA

We used 420 to determine whether the Amino-Nogo

domain was the specific Nogo-A domain that influenced

the integrin signaling pathway. Western blotting revealed

that Amino-Nogo treatment attenuated integrin av

expression (P \ 0.01) (Fig. 4) and p-FAK level (P \ 0.01)

(Fig. 5), but no significant change in integrin a5 expression

was observed (Fig. 4). RhoA activation was increased

significantly (P \ 0.05) after 420 treatment (Fig. 6).

Together, these results demonstrated that Amino-Nogo

inhibited axonal outgrowth via the integrin av signaling

pathway.

Discussion

Regeneration in the CNS after injury has been a research

hotspot in recent years, and much research has focused on

the optic nerve as a representative of the CNS. The axons

of RGCs form the optic nerve. Axonal regeneration in

RGCs is limited after optic nerve injury. Understanding the

mechanism underlying the inhibition of axonal outgrowth

in RGCs would provide a better understanding of the

capacity for regeneration in the CNS after injury. The

present study revealed that integrin av, integrin a5 and

FAK, which are integrin signaling pathway-related pro-

teins, were all expressed in the visual cortex, retina and

optic nerve of the visual system (Fig. 1). Our results

Fig. 2 Expression of Nogo-A in different rAAV2/8-Nogo-A-siRNA-

transfected RGCs. The RGCs were transfected with rAAV2/8-Nogo-

A-siRNA1, rAAV2/8-Nogo-A-siRNA2, rAAV2/8-Nogo-A-siRNA3

and rAAV2/8-NC-siRNA for 7 days. Nogo-A protein expression was

determined using western blotting. Nogo-A protein expression was

significantly reduced in all siRNA groups compared to the rAAV2/8-

NC-siRNA group. Error bar = SD, n = 6. **P \ 0.01

Neurochem Res

123



suggest that an Amino-Nogo–integrin signaling pathway

exists in the optic nerve (Fig. 7). Further research into the

components of the Amino-Nogo-integrin signaling path-

way in optic nerve is required.

Nogo-A is expressed primarily by oligodendocytes and

myelin in the adult CNS [31–33]. It is mainly known for its

inhibitory effects on axon regeneration and compensatory

sprouting after CNS injury [34, 35]. In addition to its glial

expression, Nogo-A is also found on central neurons,

which express it at high levels during development [12, 32,

33, 36, 37]. Focusing on the outgrowth of RGCs, one type

of central neurons, we detected that Nogo-A was highly

expressed in RGCs (Fig. 2). It is likely that Nogo-A plays a

role in RGC outgrowth and that knocking down Nogo-A

could promote RGC outgrowth, as demonstrated by our

finding that Nogo-A siRNA significantly promoted RGCs

axonal length increased. The presence of Nogo-A on the

cell surface was verified, and cell-surface Nogo-A acted on

neighboring neurites and cells [38]. As elevated levels of

Nogo can inhibit the activation of integrins [22], it is likely

that a Nogo-A siRNA that decreases Nogo-A expression

should relieve the inhibition of the integrin signaling

pathway; however, results from our study showed that our

Nogo-A siRNA also increased integrin levels, and similar

results have been reported in previous articles [39–42].

Moreover, the change in integrin expression can lead to

activation of downstream molecules [39, 40]. This finding

suggests that Nogo-A inhibits RGC axonal outgrowth

through the integrin signaling pathway.

The inhibition of axonal regeneration by Nogo-A is

attributable to its two functional domains, the amino ter-

minal domain and Nogo-66 [5–8], which interact with

Fig. 3 Representative images of RGCs with Thy-1 (red) and GAP-43

(green) staining in the indicated groups. The RGCs were treated with

NC siRNA, Nogo-A siRNA, Nep1–40 (50 nM) and 420 (40 nM).

The RGCs were stained with anti-Thy-1 and the axonal lengths were

analyzed by immunofluorescence staining with anti-GAP-43 after

7 days in culture. The RGC axonal length following Nogo-A siRNA

treatment was the longest among the indicated groups; RGC axonal

length following Nep1–40 treatment was longer than that of the control.

The axon length following 420 treatment was the shortest among the

treated groups. There was no significant difference between the control

group and NC siRNA group. Error bar = SD, n = 6. *P \ 0.05,

**P \ 0.01. Scale bar: 50 lm (Color figure online)
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different receptors and exert different biological effects. To

deepen our understanding of the roles of the two functional

domains, we used420 to mimic the effect of Amino-Nogo

and Nep1-40 to block Nogo-66. RGCs treated with 420

showed significantly inhibited integrin levels and reduced

axonal length (Fig. 3). However, this was not the case in

RGCs treated with Nep1-40 [29, 43]. There were no

changes in integrin level when RGCs were treated with

Nep1-40. Collectively, these results suggest that the

Amino-Nogo domain, but not the Nogo-66 domain, acts

through the integrin signaling pathway in RGCs, similar to

previous findings from research on cell adhesion [22].

Integrins contain several subunits, and it is possible that

the Amino-Nogo domain exerts an inhibitory function via a

specific integrin subunit. Both integrin av and integrin a5

were found to be expressed in the visual system in our study

(Fig. 1). Treatment of RGCs with Amino-Nogo decreased

integrin av level, but Nep1–40 treatment did not alter inte-

grin av expression. Furthermore, the integrin av level

increased after Nogo-A knockdown, which decreased after

Amino-Nogo treatment. However, integrin a5 expression

was not significantly altered by Amino-Nogo or Nogo-A

Fig. 4 Expression of integrin av and integrin a5 proteins in the

indicated groups. The RGCs were treated with NC siRNA, Nogo-A

siRNA, Nep1–40 (50 nM) and 420 (40 nM) for 7 days; protein

expression was detected using western blotting. The expression of

integrin av was increased by Nogo-A siRNA and suppressed by420,

but no change was observed in the Nep1–40 treatment group. None of

the treatment groups exhibited a change in integrin a5 expression.

There was no significant different between the control group and NC

siRNA group in terms of the expression of integrin av and integrin a5

proteins. Error bar = SD, n = 6. **P \ 0.01

Fig. 5 Expression of p-FAK and total FAK protein in the indicated

groups. The RGCs were treated with NC siRNA, Nogo-A siRNA,

Nep1–40 (50 nM) and 420 (40 nM) for 7 days; protein expression

was detected using western blotting. Nogo-A siRNA treatment

increased the level of p-FAK, but 420 and Nep1–40 treatment

significantly suppressed the p-FAK level. The level of total FAK was

not significantly changed in the treated groups. There was no

significant difference between the control group and NC siRNA group

in terms of expression of p-FAK and total FAK protein. Error
bar = SD, n = 6. *P \ 0.05, **P \ 0.01
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siRNAs (Fig. 4), which suggested that the Amino-Nogo

domain of Nogo-A primarily inhibits the integrin av sig-

naling pathway. In addition, the lack of significant change in

integrin a5 level in our study was possibly due to the fact

that integrin a5 is not a major participator in the Amino-

Nogo–integrin signaling pathway, unlike integrin av. Addi-

tional investigations are required to resolve these issues.

Focal adhesion kinase is a key tyrosine kinase in the

integrin transduction pathway [24]. FAK is phosphorylated at

tyrosine 397 after integrin activation [26], and it inhibits

growth cone dynamics and axonal path-finding via RhoA [25,

27, 28]. Amino-Nogo treatment significantly suppressed FAK

phosphorylation. Nogo-A knock down by siRNA activated

FAK, and the level of phosphorylated FAK was increased

(Fig. 5). We also found that axonal outgrowth in RGCs was

inhibited when RhoA was activated following420 treatment.

However, knockdown of Nogo-A inhibited RhoA and pro-

moted RGC axonal outgrowth (Fig. 6). These observations

are consistent with those of Niederost et al. [44], who sug-

gested that RhoA was activated by Amino-Nogo, which was

triggered through the inhibition of integrins. We elucidated

that the Amino-Nogo–integrin av–FAK–RhoA signaling

pathway was involved in the inhibition of axonal outgrowth.

Interestingly, the phosphorylated FAK level was attenu-

ated by Nep1–40 treatment (Fig. 5). A previous study showed

that the Nogo-66–NgR co-receptor could activate RhoA [45].

The decrease in RhoA activation results from Nep1–40 pre-

venting Nogo-66 from binding to the NgR (Fig. 6) [29, 43,

45–48]. Theoretically, there is no change of FAK level

because there is no alteration in integrin av level following in

the Nep1–40 treatment (Fig. 4). A possible explanation for

this may be that RhoA regulates the activation of FAK in turn,

as previous studies have suggested [49–51]. However, this

phenomenon requires further investigation.

In conclusion, our data suggests that integrin av is the

primary component that links Amino-Nogo and FAK.

Integrin av may play an important role in the inhibitory

effects of Nogo-A on RGC axonal outgrowth, and RhoA

activation is related to the inhibition of integrin signaling

by Amino-Nogo. These data have uncovered a new

molecular mechanism for the promotion of axonal regen-

eration in the CNS, and may provide new and more specific

targets to treat and prevent injury of the CNS. However,

this signaling pathway requires further verification in vivo.
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