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ABSTRACT 

Spontaneous neural activities exist early in development and their spatiotemporal patterns play 
important roles in the development of sensory maps such as maps of retinotopy in the visual system. 
We summarized different optogenetic tools, including transgenic mouse lines, viral-mediated 
transfection and electroporation methods to enable the expression of light-gated channelrhodopsin 
(ChR2) in retinal ganglion cells (RGCs) before the onset of vision. Patch-clamp and extracellular 
recording experiments verified that activities of ChR2-expressing cells were precisely manipulated 
by the patterns of optical stimuli. In chronic stimulation experiments, light-emitting diodes 
controlled the activity patterns of ChR2-expressing RGCs in vivo. Changes in the retinotopic map in 
Superior Colliculus (SC) were examined by quantifying the relative sizes of fluorescently labeled 
target zones. Our results revealed that various optogenetic and optical tools can manipulate retinal 
activities with precise temporal patterns. These techniques can be readily used in studying the 
development of the central nervous system of neonatal rodents. 
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1. INTRODUCTION  
Optogenetics combines genetic targeting of specific neuron types with optical technology for the control of neuronal 
activity at millisecond timescales in intact and living neural circuits. This technology uses a gene derived from the algae 
Chlmydomonas reinhardtii that encodes a blue light-gated cation channel Channelrhodopsin-2 (ChR2) 1 as well as a 
yellow light-gated cation channel Volvox Channelrhodopsin-2 (VChR2) 2. Delivery of millisecond-scale pulses of blue 
light to ChR2 expressing neurons triggers trains of spiking activity in vivo 3, 4. Technical advantages of using the 
optogenetics approach include the ability to produce highly consistent and sustained activity patterns over long periods 
of time (in comparison to pharmacological induction of neuronal activity), precise spike timing control (in comparison to 
optical uncaging), and cell type specificity (in comparison to electrical stimulation).  
The vertebrate brain organizes visual information about the sensory world into remarkably precise maps. Neighboring 
Retinal Ganglion Cells (RGCs) in the retina project to neighboring cells in the brain, forming feature maps such as 
retinotopy in the lateral geniculate nucleus (LGN), superior colliculus (SC) and visual cortex (VC). Remarkably, 
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anatomically and functionally precise maps emerge before the onset of vision 5. It is widely hypothesized that molecular 
cues are responsible for the establishment of coarse map structure in the SC, and activity dependent processes 
subsequently refine these sensory circuits to functional precision 6. RGCs exhibit spontaneous activity from late 
embroynic ages (~E17 in the mouse) until eye opening (~P13 in the mouse) 7. This spontaneous retinal activity consists 
of spatiotemporally correlated slowly propagating waves 8 that are thought to be the responsible for the activity 
dependent refinement of visual maps. Mutant mice lacking the β2 subunit of the nicotinic acetylcholine receptor have 
disrupted spontaneous retinal activity 9 and the projection pattern of RGCs to the colliculus is left in an unrefined, 
immature state 10. While these results provide some evidence for an instructive role of retinal activity in map refinement, 
it is not clear how the spatiotemporal activity pattern conveys information necessary for the development of visual maps. 
A fundamental difficulty in examining the role of activity-dependent ‘instruction’ in map development is that we have 
poor experimental control of the spatiotemporal retinal activity patterns in vivo. Since the retinocollicular map matures 
before the onset of vision, it is impossible to directly manipulate retinal activity using ‘normal’ visual stimuli. Similarly, 
electrical stimuli applied directly to the optic nerve in vivo also disturbs aspects of visual map development in ferrets 11, 
but this manipulation is also very crude and difficult to control in early postnatal mice. We present here a collection of 
optogenetics tools for ChR2 expression in RGCs, as well as chronic optical manipulation of retinal activities. These 
techniques can be readily used in studying the development of the central nervous system of neonatal rodents. 
 

2. METHODS 
2.1 Retina section and immunohistochemistry 

Thy1-ChR2-eYFP mice were obtained from Guoping Feng’s lab at MIT. Animals were genotyped according to protocols 
from the Jackson’s Laboratory (stock number 007612). Retinas of Thy1-ChR2 mice were postfixed for 6 hr in 4% 
paraformaldehyde after dissection and then immersed in 30% sucrose for 10 hr. The retina samples were frozen in 
embedding medium (Jung, Leica Microsystems) in -80°C followed by sectioning at 14μm on a freezing microtome 
(Leica CM 1850). Retina sections were rinsed with 0.5% Triton-X100 in PBS for 20 min and blocked with 2% donkey 
serum and 2 mg/ml BSA in PBS containing 0.05% Triton-X100 overnight at 4°C. Primary antibody (anti-GFP,1:100, 
Abcam) incubation was overnight at 4°C followed by five washes in PBS, and secondary antibody (Alexa 488-donkey 
anti-chicken,1:200, Jackson ImmunoResearch) incubation was overnight at 4°C. After three washes in PBS, retina 
sections were mounted for imaging.  
  

2.2 Virus injection 

P1 ChaT-CRE, Pax6-CRE or C57 pups were anesthetized by hypothermia for 4-6 min before injection surgery. AAV- 
hSyn-hChR2-mCherry (Neuron Biotech, Shanghai) or AAV-DIO-ChR2-mCherry (North Carolina Core Facility) virus 
was filled into pulled glass pipettes (tip diameter ~2–3 μm); eyelid of the anaesthetic mice was opened and the eyeball 
protruded; viral solution was injected intravitreously in the dorsal, ventral, temporal and nasal region of each eye (350 nl 
in total) using the Nanoject II system (Drummond Scientific Company) at its original titer.  
For cortical virus injection, P14 mice were anesthetized by intraperitoneal injections of ketamine(70mg/kg) and 
Dorminor (0.5mg/kg) cocktail. A small craniotomy was made at bregma (lateral 3 mm, ventral 0.85mm). 0.5 µl of 
lentivirual solution was injected using a programmable pump (PHD2000, Harvard Apparatus). Animal was recovered 
and returned after suturing the skins. 
 
2.3 Electroporation 

P1-2 C57 pups were anesthetized by hypothermia for 4-6 min before surgery. Total amount of 0.6µl plasmid DNA 
solutions containing CAG-ChR2-Venus (Addgene) and CAG-tdtomato were injected intravitreously into each eye. Setup 
for electroporation was made as previously described 12. Briefly, electrodes were made from stainless steel forceps. 
Isolated pulse stimulator (AM systems Model 2100) generated 3-5 pairs of bipolar square pulses (25V-pp, 50 msec, 1sec 
interval) that were applied through the electrodes across the eyeballs. Pups were placed on a temperature-controlled heat 
pad after surgery and returned to their mothers upon recovery. Fluorescent images were taken at P3-4. Chronic optical 
stimulation experiments started at P3-4. Detailed stimulation protocols can be found in 2.5. Animals were terminated at 
P7-8 for retinotopic mapping.  
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2.4 In vitro electrophysiology 

350 µm cortical slices were prepared using a vibratome (VT1000, Leica) in ice cold artificial cerebrospinal fluid (in mM: 
NaCl 126, KCl 3, NaH2PO4 1.25, MgSO4-7H2O 2, NaHCO3 26, dextrose 10 and CaCl2 2, equilibrated with 95% O2 and 
5% CO2). Intracellular recordings were performed at current clamp mode using Axoclamp 2B (Axon Instrument) at 
room temperature. Cells were visualized under a Differential Interference Contrast microscope. A 473nm blue laser 
(World Star tech) was coupled to the back of the DIC microscope to provide optical stimulation. 

The retina of Thy1-ChR2 mice at P10 was dissected in Ringer’s solution containing (in mM) NaCl 124, KCl 2.5, CaCl2 
2, MgCl2 2, NaH2PO4 1.25, NaHCO3 26 and glucose 22, pH 7.35 and oxygenated with 95% O2 and 5% CO2. RGC 
responses were recorded using a multielectrode array (100 μm apart, multichannel systems). The retina was stimulated 
by a blue LED (Luxeon K2 blue, Philips). Action potentials were thresholded offline (40 μV) and filtered between 100 
Hz and 3 kHz. Offline data were analyzed using Offline Sorter (Plexon), Neuro Explorer (Nex Technologies) and a 
custom program. 

2.5 Chronic stimulation 

Mice were electroporated with CAG-ChR2-Venus and CAG-tdtomato at P1 and chronic stimulation started P3 – P4 in an 
isoflurane chamber (0.7%). Eyelids of the pups were cut and glued open with atropine application before stimulation.  
Blue light stimulation (1 sec duration, 10 sec interval) was provided by a blue LED (connected to Master 8 stimulator). 
The stimulation lasted for 2-3 days, with12 hr stimulation everyday before the pups were recovered and returned to the 
cage. 

2.6 Fluorescence image acquisition and analysis 

Fluorescence images were acquired using Olympus BX51 and Zeiss Imager Z under automatic exposure mode. For the 
analysis of target zone sizes in the chronic stimulation experiment, the images were processed using a homemade Matlab 
program13. Briefly, the outline of the SC was drawn manually and background fluorescence was subtracted. The fraction 
of SC with fluorescence intensity above half maximum was calculated for each animal. Statistical significance was 
calculated using student’s t-test.  

 

3. RESULTS 
3.1  ChR2 expression in the retinas of neonatal mice 

RGCs convey the output of retina to the central visual area using trains of action potentials. The onset of light 
responsiveness happens around P12. In order to manipulate retinal input in neonatal mice during the development of 
visual maps, expression of ChR2 in RGCs is required to start before P12.  Ideally, subtypes of RGCs with specific 
anatomical or functional features14 should be driven to express ChR2.  

Various transgenic mouse lines have been generated to carry ChR2 gene 15, including cre-dependent mouse lines that 
provides convenient tools for expression in specific cell types 16. RGCs are neurons with long projecting axons, 
suggesting that specific expression of ChR2 in RGCs is likely to be found in transgenic lines with axonal projection-
specific promoters such as Thy1. Fig. 1 demonstrated the expression of ChR2 in the retina of Thy1-ChR2 mice. The 
expression starts around P9. Cell bodies of the ChR2-expressing neurons lied in the RGC layer, and their dendrites 
stratified in the ON and OFF sublayers of the inner plexiform layer (Fig.1B). Axons of the ChR2-expressing RGCs exit 
the retina through the optical disc. Transgenic mouse lines have relatively stable expression level and pattern between 
generations. Once the cre-lox lines for optogenetics have been established, manipulation of activities from subtype RGCs 
such as direction-selective RGCs could provide insights into the development of different visual functions.   
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